
Solving for the
Analytic Piecewise

Extension of Tetration
and the Super-logarithm

by Andrew Robbins

Abstract

An overview of previous extensions of tetration is
presented. Specific conditions for differentiability and
piecewise continuity are shown. This leads to a way of
generating approximations of the super-logarithm. These
approximations are shown to converge to a function that
satisfies two basic properties of extensions of tetration.

Table of Contents

Introduction 2
Background 4
Extensions 6
Results 10
Generalization 20
Conclusion 21
Appendices 22

Copyright 2005 Andrew Robbins

1

Introduction

Of the operators in the sequence: addition, multiplication, exponentiation, and

tetration, only the first three are well-defined analytic operations. Tetration, also known

as the hyper4 operator, power towers, and iterated exponentiation, has only been “nicely”

defined for integer y in xy . Although extensions of tetration to real y have been made,

those extensions have not followed simply from the properties of hyper-operations. The

particular form of this property as it pertains to tetration is:

Property 1. Iterated exponential property

xy = x(xy−1) for all real y.

Tetration has two inverses, the super-root, and the super-logarithm:

z = xy = tet x (y)= twr y (x)

x = srt y (z)= twr y
−1 (z)

y = slogx (z)= tet x
−1 (z)

When y is fixed, the function twr y (x) is called an order y power tower of x [14]. When

x is fixed, the function tet x (y) is called a base x tetrational function of y. In general, it

is pronounced: x tetra y. Inverting a power tower gives the super-root, and inverting a

tetrational function gives the super-logarithm, More detail about these inverses can be

found in [12], [14] and [15]. The super-logarithm has an equivalent to property (1), and

can be found by applying the super-logarithm to property (1) as follows:

y − 1= slogx (xy−1)

y = slogx (x
y)= slogx (x

(xy−1))= slogx (xy−1) 1

Replacing xy−1 with z, we get the equivalent property for the super-logarithm:

Property 2. Function linearization property

slogx (x
z)= slogx (z) 1

2

This property is actually a special case of Abel's equation for linearizing a

function, which is found in [4] and [9]. Linearization is done in the hope of iterating a

function continuously, or finding the iterative roots of a function [6]. The generalization

 (f (z))= (z)1 can be used to iterate a function continuously, as follows:

 (f (z))= (z) 1
 (f n (z))= (z) n
f n (z)= −1 ((z)n)

where n could be real. In the case above, f (z)= x z , and (z)= slogx (z) . This

means that if we can find the linearizing function of exponentials: slogx (z) , then not

only can we define tetration as its inverse, but we can also use it to continuously iterate

exponential functions.

The next property uses the notation C n . A function f (x) is C n , if it is

n-times differentiable. To be analytic, a function must be infinitely differentiable, or

C∞ . All the other hyper-operations below tetration (hyper4) are C∞ for both

operands, so it is natural to require this of tetration as well. When combined with either

property above, this property ensures a unique extension of tetration:

Property 3. Infinite differentiability property

f (x) is C∞ ≡ Dk f (x) exists for all integer k.

Up to this point, extensions of tetration have been made that satisfy property (1),

but not property (3), and extensions of tetration have been made that satisfy property (3),

but property (1) only for integer y. To avoid discontinuous derivatives, and to be a valid

extension of tetration or the super-logarithm, these properties are necessary. It is the goal

of this paper, however, to show that these properties are sufficient to find such an

extension, and that the extension found will be unique.

3

Background

History

Tetration has fascinated mathematicians for centuries, in part because it is as

fundamental as addition or multiplication in its definition, yet was beyond the realm of

calculation due to its fast growth rate. Although the calculation of tetration at low values

such as 55 is still a daunting task, computational advances have open the doors of

solving large systems of equations involved in finding non-integer values.

Many hobbyist and professional mathematicians alike have rediscovered tetration,

and asked themselves the questions: what is 20.5 or ee or e ? Is there an answer?

If so, what is the derivative D y (x
y) ? These questions have motivated previous

extensions of tetration, just as they have motivated this one. The advances made so far in

tetration have not been by motivation alone. Many mathematicians have contributed to

what is known about tetration today.

The first tetration-related proof was made by Euler, when he proved the

convergence of x∞ , although he used a different notation. The first person to publish

the notation xy was Mauer [4], and was later popularized by Rucker in [13]. The word

tetration was coined by Goodstein from the words tetra and iteration [10]. The sequence

of operations from which tetration comes is generally known as the hyper-operations, or

hyper-n operators. Goodstein also gives names to the hyper-operations: pentation for

hyper5, hexation for hyper6, and so on. The first to write about this sequence of

operations was Grzegorczyk [12], hence the sequence has also been called the

Grzegorczyk hierarchy. When the hyper-operation sequence is viewed as a ternary

function, it is sometimes called the Ackermann function [5]. Many people have

introduced notations for this sequence of operators, and beyond, including Knuth [8],

Conway [2], Munafo [11], and Bowers [1].

Euler's proof of the convergence of x∞ , is useful in defining many other related

functions, one of which is the Lambert W function, also known as the product-logarithm.

There is also a relationship between these two functions and the second super-root. To

4

overview the properties:

x∞ = u where u = xu

W (x)= u where u eu= x

srt2 (x)= u where uu= x

and using only basic algebra, the following identities can be found:

x∞ = W (−log (x))
−log (x)

= 1/srt2 (x
−1)

(e−x)∞ x =W (x) = x /srt2 (e
x)

1/ (x−1)∞ = log (x)
W (log (x))

= srt2 (x)

showing that these functions can all be expressed in terms of each other. So if it were a

matter of choice, any would work, although many Computer Algebra Systems come with

the product-logarithm. Aesthetically, though, x∞ seems a “nicer” choice.

Both the infinite power tower and the product logarithm have series expansions:

x∞ = ∑
k=1

∞ (k log (x))k−1

k !

W (x)= ∑
k=0

∞
(−k)k−1 xk

k !

and are very well-known, well-defined analytic functions.

Applications

The most immediate applications of tetration and the super-logarithm are in the

representation of large numbers, and continuously iterated exponentiation. Some

applications of the approximations given in this paper that may not be immediate are:

• Approximating continuous iterations of other functions

• Validating closed-form extensions of tetration or the super-logarithm

• Developing new algebraic identities using the approximations

One application of the super-logarithm could be in population modeling. In

particular, a graph of the super-logarithm looks similar to a logistic population model.

Instead of stopping at some point, though, the super-logarithm continues to grow.

5

Extensions

One of the reasons why extending xy to real y is so difficult, is that many of the

laws that are instrumental in defining exponentiation (hyper3) do not hold for tetration

(hyper4). For example, exponentiation satisfies n x = x1/n whereas the same is not true

of tetration; srtn (x)≠ x1/n . This is in part because there is no multiplicative law of

exponents for tetration; (xa)b ≠ x(ab) . Another aspect of exponentiation that is

convenient is the change-of-base formula for logarithms. There is currently no known

change-of-base formula for super-logarithms, however. The absence of these properties to

fall back on means that a completely different method must be used to make progress.

Piecewise Extensions

A piecewise-defined extension of tetration uses property (1) to compute the values

of tetration at all intervals, given the values in an interval of length one. So any piecewise

extension of tetration must obey property (1) by definition. Also, one benefit of using a

piecewise extension is that in coming up with extensions, the only part that needs to be

taken into account is the critical interval, not the entire function. Before we get to some

piecewise extensions lets define their general form:

Definition 1. General piecewise extension of tetration

xy = logx (xy1) if y ≤−1

xy = t (x , y) if −1 y ≤ 0

xy = x(xy−1) if y 0

Definition 2. General piecewise extension of the super-logarithm

slog x (z)= s (x , x
z)− 1 if z ≤ 0

slog x (z)= s (x , z) if 0 z ≤ 1
slog x (z)= s (x , logx

m (z)) m if (xm−1) z ≤ (xm) , m 0

6

where t (x , y) is the critical function of tetration, and s (x , z) is the critical function

of the super-logarithm. The most common extension, found in [4] and [15], is the

extension that behaves like a line within the critical functions:

Extension 1. Linear t (x , y)

t (x , y)= y 1 if −1 y ≤ 0

We can invert this definition to get a piecewise-defined extension of super-logarithms:

Extension 2. Linear s (x , z)

s (x , z)= z − 1 if 0 z ≤ 1

The reason why this can be done is that the value of tetration everywhere depends only on

the value of tetration where –1 < y ≤ 0, and the value of the super-logarithm everywhere

depends only on the value of the super-logarithm where 0 < z ≤ 1. This will help when we

find a series, because the only place we need convergence is between 0 and 1.

Analytic Extensions

An analytic extension of tetration or the super-logarithm is a function that satisfies

property (3). This means that these functions can be represented as an infinite series

expansion. Depending on the function, it may be preferable to expand it about different

points or with respect to different variables. This is a list of the expansions used here:

Definition 3. General series extension of tetration with respect to the hyper-base

xy = ∑
k=0

∞
log (x)kk (y)

Definition 4. General series extension of tetration with respect to the hyper-exponent

xy = ∑
k=0

∞ yk

k !
k (x)

7

Definition 5. General series extension of the super-logarithm

slogx (z)= ∑
k=0

∞ zk

k !
vk (x)

In [4], Galidakis gives an extension of the form in definition (3):

Extension 3. Summary of Galidakis' analytic extension in [4]

am ,n= 1 if m= n= 0
am ,n= 0 if m= 0and n≠ 0

am ,n=
1
n !

if m= 1

am ,n=∑
j=1

n
j
n
am ,n− j am−1, j−1 otherwise

 (x)= exp 4

4 x2−1 if | x | 1/2

 (x)= 0 otherwise

m (x)=
(am ,n− am−1,n) (x−(m−1/2))

∫
m−1

m

 (t−(m−1/2)) d t

n (x)= 1 if n= 0

n (x)=∫
0

x

∑
m=1

n

m (t)d t if n≠ 0

Extension 4. Analytic term function related to the piecewise linear critical function

k (y)= 1 if k = 0, y 1

k (y)=
yk

k !
if 0 ≤ y ≤ 1

k (y)= ∑
j=1

k
j
k
k− j (y) j−1 (y−1) otherwise

which uses the recurrence relation found in [4].

8

To show that these two analytic extensions do not satisfy property (1), we can test

values. If we find one real y for which property (1) is not satisfied, then it is not satisfied

for all real y. According to Galidakis [4], extension (3) converges for all x in a compact

subset of the complex plane, so the series converges for x = e.

Using extension (3), the values: e0.5 = 1.858 and e1.5 = 5.613 do not satisfy

property (1), because e1.858= 6.413≠ 5.613 . Doing the same using extension (4), the

values: e0.5 = 1.649 and e1.5 = 5.185 do not satisfy property (1) because

e1.649= 5.200 ≠ 5.185.

Neither of these analytic extensions satisfy property (1), so neither of these are

piecewise-definable. We could use then as critical functions of a piecewise definition of

tetration, but doing so would cause them to fail to be analytic (property (3)).

Is there a way to find an extension that satisfies both properties? There is, but it is

not an extension of tetration itself. It is an extension of the super-logarithm, the inverse of

tetration, so by finding the values of a super-logarithm that satisfies property (2), and

property (3), the inverse of the super-logarithm will satisfy property (1) and property (3).

9

Results

Discussion

To solve the problem of extending tetration to non-integer hyper-exponents once

and for all, neither property (1) nor property (3) is sufficient alone. Both must be

combined in order to get a unique extension of tetration. There is already one way to

ensure that property (1) be satisfied, and that is to use a piecewise extension. Now we

need a way of ensuring that property (3) is satisfied. To do this we need a way of ensuring

infinite differentiability. The problem is that the derivatives of some previous piecewise

extensions were not continuous, so there would be a difference between the limit to a

point from the left and the limit to the same point from the right. We need a way of

ensuring that there is no difference between these two limits. Expressed formally:

Definition 6. Piecewise error transform

PWET
xc

k { f (x)}= lim
xc

+ D
k f (x)− lim

xc
– D

k f (x)

which should be zero for all k if f (x) is C∞ . To become familiar with the piecewise

error transform, lets apply it to the piecewise extensions we have covered so far. First lets

apply it to the piecewise extension of tetration as y approaches zero:

PWET
y0

0{ x
y }= x t (x ,−1)− t (x ,0)= 1− 1=0

PWET
y0

1{ x
y }= x t (x ,−1) log (x)D y t (x ,−1)− D y t (x ,0)= log (x)− 1

PWET
y0

2{ x
y }= log (x)2

...
PWET
y0

k { x
y }= D y

k [x t (x , y−1)]y=0− D y
k [t (x , y)]y=0

where the piecewise extension with linear critical function is used to evaluate tetration.

The first line indicates that there is no difference between the left and right limits to zero

of the function itself, whereas the second line indicates that there is a difference between

10

the left and right limits to zero of the derivative of the function with respect to y. This

could be seen in a graph as a discontinuity in the derivative, but the graph in appendix B

is for x = e, which makes the second line zero. This can be seen as the derivative being

continuous. Although the second line can equal zero when x = e, the third line will be

one, and this would show itself in the graph as a discontinuity in the second derivative.

From this we can determine that this extension is not C∞ , which makes it a non-

analytic extension.

The other piecewise extension that was presented was that of the super-logarithm.

Now if we apply the piecewise error transform to the piecewise extension of the super-

logarithm as z approaches zero, we get: the following:

PWET
z0

0{slogx (z)}= 1 s (x ,0)− s (x ,1)= 0

PWET
z0

1{slogx (z)}= Dz s (x ,0)− log (x)D z s (x ,1)= 1− log (x)

PWET
z0

2{slog x (z)}=−log (x)2

...
PWET
z0

k {slog x (z)}= Dz
k [s (x , z)]z=0− Dz

k [s (x , x z)− 1]z=0

where the piecewise extension with linear critical function is used to evaluate the super-

logarithm. Again, these expressions can be seen in the graph in appendix B as a

continuous red line for any x. The green line, which represents the first derivative, will be

discontinuous for all x except x = e. For x = e, the green line is continuous, because the

second expression above is zero. There is no number that makes the third expression zero,

so this will be seen as a discontinuous blue line for any x.

To make an extension of tetration that satisfies property (1) and property (3), we

can combine the general extensions found in definition (1) and definition (4), by using the

series as the critical function t (x , y) , keeping the coefficient functions k (x)

unknown. We can restrict those coefficients to satisfy:

PWET
y0

k { x
y }= 0

11

for all nonnegative integer k. If we only require that this is true up to some integer n,

where 0≤ k n then we get a rather small system of equations, say for n = 2:

{ −1 x⋅x
1 (x)⋅x

2 (x) /2= 0

−1 (x) x⋅x
1 (x)⋅x

2 (x)/2⋅log (x)⋅(1 (x)− 2 (x)) = 0}
which are nonlinear equations, and in general, are hard to solve, even with a computer.

The reason why only two unknown terms were used in the equations above, is that the

zeroth term, or 0 (x)= x0 = 1 is already known, and we only have two equations.

Solving systems of equations works best when the number of unknowns is the same as

the number of equations, so given two equations we should be able to solve for two

unknowns. The solutions to equations obtained in this way for an extension of tetration,

generally have very extreme values, and increasing the degree to n = 3, for example, will

produce solutions for k (x) that differ greatly. Producing this kind of system of

equations for the super-logarithm, on the other hand, is more well-behaved.

Starting with definition (2) and definition (5) instead, we will use the series

extension as the critical function of the piecewise extension of the super-logarithm,

letting the coefficients vk (y) of the series remain unknown. We already know the

zeroth coefficient: v0 (x)= slogx (0)=−1 from integer tetration, so we will be

solving for the coefficients vk1 (x) where 0≤ k n in the equations generated by

letting the piecewise error transform of the super-logarithm equal zero. For n = 2:

{ 1− v1−
1
2
v2= 0

v1− log (x) v1− log (x) v2= 0}
For n = 3:

{ 1− v1−
1
2
v2−

1
6
v3= 0

v1− log (x) v1− log (x) v2−
1
2
log (x) v3= 0

−log (x)2v1 v2− 2 log (x)
2 v2−

3
2
log (x)2 v3= 0

}
12

where vk=vk (x). This time, however, the equations are linear, so there are many

more methods at our disposal for determining if the equations are solvable, and finding

the solution. One such way is finding the determinant of the matrix associated with the

equations. Before we can turn the system of equations into a matrix we must put only the

unknowns on the left, and constants on the right. As you can see in the systems above the

only constant is the 1 in the first equation in each system. For the equations found above

for n = 2, we can group them like this:

{ −v1 − 1
2
v2= −1

(1− log (x)) v1 −log (x) v2= 0}
Also, in the interest of readability all equations will be divided by a power of log (x) ,

because as you can see above, each equation has an increasing power of log (x) in it.

Also, because the majority of the coefficients are negative we can also reverse the sign of

the equations. Reversing the sign, and dividing by a power of log (x) will make:

{ v1 1
2
v2= 1

1− 1
log (x) v1 v2= 0}

but, before we can represent the above set of equations as a matrix we must define a

basis. As we stated earlier, the unknowns we are solving for are related to the coefficients

of the series in definition (5). These unknowns are also the derivatives of the super-

logarithm at z = 0, but as a basis, they are not merely numbers or vectors, they are

functions of x. Using the sequence notation 〈⋅〉k=i
n , the basis we will be using is:

v = 〈vk 〉k=1
n where vk = vk (x)= Dz

k [s (x , z)n]z=0

Using this basis, the above system of equations has the matrix equation for n = 2:

〈−PWETz0
k {slogx (z)2}

log (x)k 〉
k=0

1

= [1
1
2

1− 1
log (x)

1]v = [10]

13

For n = 3:

〈−PWETz0
k {slogx (z)3}

log (x)k 〉
k=0

2

= [1
1
2

1
6

1− 1
log (x)

1
1
2

1 2− 1

log (x)2
3
2
]v = [100]

For n = 4:

〈−PWETz0
k {slog x (z)4}

log (x)k 〉
k=0

3

= [1 1
2

1
6

1
24

1− 1
log (x)

1
1
2

1
6

1 2− 1

log (x)2
3
2

2
3

1 4
9
2
− 1

log (x)3
8
3
]v = [100

0
]

For n = 5:

〈−PWETz0
k {slogx (z)5}

log (x)k 〉
k=0

4

= [
1

1
2

1
6

1
24

1
120

1− 1
log(x)

1
1
2

1
6

1
24

1 2− 1

log (x)2
3
2

2
3

5
24

1 4
9
2
− 1

log (x)3
8
3

25
24

1 8
27
2

32
3

− 1

log(x)4
125
24

]v= [1000
0
]

where slogx (z)n is the piecewise extension of the super-logarithm with an analytic

extension as its critical function whose coefficients are obtained from the system of n

equations in n unknowns, generated by letting the piecewise error transform equal zero.

The equation matrices above can be computed without finding the derivatives of the

super-logarithm. An alternate way of generating the above matrix is:

〈〈 mkm ! − mk log (x)
−k 〉

m=1

n 〉
k=0

n−1

where jk is the Kronecker delta (1 if j = k, 0 otherwise), usually used with tensors.

14

To indicate that the critical function used by the general piecewise extension is

found at a certain value of n, the notation: s (x , z)n will be used. Now that we can

solve for an extension of the super-logarithm, what do the solutions look like? First, the

solution when n = 1 is actually the same as extension (2):

v1 (x)1= 1

s (x , z)1=−1⋅z0 v1 (x)1⋅z
1

s (x , z)1=−1 z

For n = 2:

s (x , z)2=−1 2 log (x)
1log (x)

z − 1−log (x)
1log (x)

z2

For n = 3:

s (x , z)3=−1 6 [log(x)log (x)3] z 3[3log (x)2−2log (x)3] z2 2[1−log (x)−2 log(x)2log (x)3] z3

24 log(x)5 log(x)22 log(x)3

Assuming that the system of equations are always linear, we can find any degree

solution we want, given enough time. What exactly have we found, though? Solving for

the super-logarithm using the piecewise error transform ensures that the function found

will be differentiable up to a point.

Lemma 1. If PWET
xc

k { f (x)}= 0 for 0≤ k n , then f (x) is C n−1 .

Even if we do find that the functions we get from the solutions to the system of

equations are C n , we still do not know if the solution is unique. To find out whether

the solution is unique we can use the determinant of the matrix that expresses the system

of equations. When the determinant is zero, then the solution is not unique, when the

determinant is not zero, then there must be one and only one solution. Here are the

determinants of the simplified matrices obtained from the systems of equations generated

by letting the piecewise error transform of the super-logarithm equal zero, for n = 2:

15

det 〈−PWETz0
k {slogx (z)2}

log (x)k 〉
k=0

1

= 1
2
 1
2 log (x)

For n = 3:

det 〈−PWETz0
k {slogx (z)3}

log (x)k 〉
k=0

2

= 1
6
 5
12 log (x)

 1

3log (x)2
 1

6 log (x)3

In order to use these expressions to find when the systems of solutions are

solvable and have unique solutions, we need to find when these expressions are equal to

zero. When x > 1, log(x) is positive, and since all the coefficients in the determinants are

positive, the only way the whole determinant will be zero is if log(x) is negative. Since

this only happens when 0 < x < 1, the determinant is nonzero for x > 1. Some of the roots

of these determinants for different n are given here to illustrate:

n x

2 0.367879

3 0.190653

4 0.126582, 0.494301

5 0.099918, 0.323049

and as you can see from the table, all roots seem to be between zero and one.

Lemma 2. det 〈PWETz0
k {slogx (z)n}〉k=0

n−1= 0 implies 0 < x < 1.

Going back to the piecewise error transform, implicitly declared in letting its

application on the super-logarithm equal zero is the relationship:

vk (x)= Dz
k [s (x , z)]z=0= Dz

k [s (x , x z)− 1]z=0

which can be used to simplify the series expansion of the critical function used by the

piecewise definition. We can now define an extension of the super-logarithm as:

16

Definition 7. The analytic piecewise extension of the super-logarithm

s (x , z)n =−1∑
k=1

n
zk

k !
vk (x) if x 1 , 0 z ≤ 1

where vk (x)= Dz
k [s (x , x z)n− 1]z=0

or vk (x)= [〈〈mkm ! − mk log (x)
−k 〉

m=1

n 〉
k=0

n−1]
−1

〈m1 〉m=1
n

slogx (z)n= s (x , x
z)n− 1 if x 1 , z ≤ 0

slogx (z)n= s (x , z)n if x 1 , 0 z ≤ 1

slogx (z)n= s (x , logx
m (z))n m if x 1 , (xm−1) z ≤ (xm) , m 0

slogx (z)= lim
n∞

slogx (z)n if x 1

where the superscript (–1) indicates the inverse matrix.

We already know that the super-logarithm defined in this manner will satisfy

property (2), because it is a piecewise extension. Although we can soon find if the super-

logarithm satisfies property (3), it still is not obvious that the series converges, or that the

final limit exists. To show this, we need to take a closer look at vk (x) . Applying the

ratio test for when x = e, we get a rather chaotic graph. Looking closely at this graph,

there is a pattern that repeats every seven terms, so we find that the graph of the ratios of

the terms is much smoother when the ratio is for those terms that are seven terms apart:

graph of
vk1 (e)n

vk (e)nk1
in k from 1 to n graph of

v k7 (e)n k !

v k (e)n (k7)!
in k from 1 to n

17

where the second graph seems to fall on a curve for low k. This curve can be expressed

algebraically by the approximate recurrence relations:

vk7 (e)⋲−vk (e) e
2 k 2.95 k logk

or: vk7 (e)⋲−vk (e) k
7(7/k)1/k

where the magnitudes are roughly:

∣vk (e)∣⋲ k (k
2/2950 k /2− 3)

which helps explain the signs of the terms. These do not help us determine the

convergence of the series, because in the limit as k∞ they become infinite. For now,

we can only see whether the approximations of the super-logarithm constructed as in

definition (7), converge to each other. In order to do this we will look only at the critical

function s (e , z)150 . The definition of this function is not limited to real numbers, it is

only the piecewise-defined slogx (z)n that is limited to real numbers. Outside a certain

region in the complex plane, complex z will give extreme values that do not correspond

to previous approximations, so we can identify an approximate radius of convergence by

looking at some 3D plots of the real part of the critical function s (e , z)150 :

graph of ℜ[s (e , z)150] graph of ℜ[s (e , z)150] = y if y < 2

18

as you can see, although we haven't found the radius of convergence algebraically, there

does seem to be a radius of convergence, and it covers the required domain of the critical

function: 0≤ z ≤1. These graphs and the tables of numerical data in appendix C are

the best proof of convergence that the author has found. Hopefully a more exact method

will be found, but until then we will assume it converges. There is no indication that it

would not converge, but that is not enough to prove it does.

Assuming lim
n∞

s (x , z)n converges for all 0≤ z ≤1 , the following shows the

uniqueness and properties of the super-logarithm in definition (7):

Rough Proof

The critical functions s (x , z)n converge for finite n, and lim
n∞

s (x , z)n seems

to converge within the approximate radius of convergence shown above. There is no

question if the critical functions are C∞ . The piecewise-defined functions

slogx (z)n are C
n−1 , by lemma (1), so in the limit slogx (z)∞ is C∞ . This

proves that slogx (z)∞ satisfies property (3), and since the piecewise-defined functions

slogx (z)n are defined using property (2), they must satisfy it. Since the determinant

being zero implies 0 < x < 1, by lemma (2), the logical complement would be that the

determinant is nonzero if x > 1. The determinant being nonzero then implies there is one

and only one solution to the system of equations the matrix represents. So if x > 1,

slogx (z)∞ exists and is unique. Therefore, given an x > 1, slogx (z)= slogx (z)∞

exists, is unique, and satisfies properties (2) and (3). This proves that definition (7) is the

analytic piecewise extension of the super-logarithm to all real number z. ∎

19

Generalization

Solving for the super-logarithm has produced “nice” C n approximations. We

can generalize this by going back to Abel's equation for linearizing a function:

 (f (z))= (z) 1
 (z)= (f (z))− 1
Dk [(z)] = Dk [(f (z)) − 1]
Dk [(z)]z=0= Dk [(f (z))− 1]z=0

 (z)n= ∑
k=0

n
zk

k !
Dk [(f (z))− 1]z=0

 (z)= lim
n∞

 (z)n

defining the linearizing function by the property we desire of it, and solving for

approximations of it for some 0≤ k n . It is possible this could work for any analytic

f (z) , but it is likely that additional conditions apply. If the equations have a solution,

and the solutions converge, then any iterate of the function can be expressed as:

 (f (z)) = (z) 1
 (f n (z)) = (z) n
f n (z)=−1 ((z)n)

This method is not restricted to continuously iterating a function over the real

numbers, the series expansion should work within some complex radius of convergence.

20

Conclusion

We now have a unique analytic piecewise extension of the super-logarithm. Using

the super-logarithm, we can define tetration as its inverse. Also, because the super-

logarithm is the linearizing function of exponentials, we can use it to define continuously

iterated exponentiation as well. Remember that the first definition of the super-logarithm

requires that x
slogx (a) = a = expx

slogx (a) (1) hold in general. This allows the definition

of continuously iterated exponentiation as follows:

Definition 8. Tetration

xy = slogx
−1 (y) if x 1, y −2

xy = logx (xy1) if x 1, y ≤−2

Definition 9. Continuously iterated exponentiation

expx
y (a)= x

yslogx (a) if x 1

In this paper, a unique analytic piecewise extension has been presented for the

super-logarithm, tetration, and continuously iterated exponentiation. In appendix A, the

method used for solving the systems of equations to produce the approximations of these

extensions is given. Now that the numerical values of the super-logarithm and tetration

can be found to any precision, it is only a matter of time before a closed-form definition

of tetration and related functions is found.

21

Appendix A — Code

Note from the Author

There are two algorithms for finding super-log. One is to compute the derivatives,

and the other it so compute the matrix. Both methods require solving a system of

equations, whether in matrix form or not. The matrix method takes about the same time

as computing the derivatives symbolically, so their is not much performance gain. Since it

takes so much time to compute the solutions for higher approximations, I made a separate

function to compute them rather than include them in the functions themselves. This

allows you to wait for the solutions once, and use them over and over rather quickly.

Since the base is part of the coefficients, it must be given before solving. I have not made

an implementation of the super-root, because it involves solving for any base

symbolically, which in general takes much longer than finding it for a numerical base. Of

all the bases, e requires the least time to prepare for, because all the equations being

solved become rational. Some sample commands are given after the implementations,

some of which demonstrate the numerical derivative functions included to reproduce

some of the graphs given in this text. You might have to mess with h for higher

derivatives, because the default h = 0.0001 and this produces almost random 4th and 5th

derivatives. To fix this, let h = 0.001 or h = 0.01 and they become more smooth.

In Pseudo-code

let s(x, z, n) = -1 + sum[k = 1..n] z^k/k! v_k(x)

solve for v_(k+1)(x) where k = 0..(n-1) in:

(D_z^k[s(x, z, n)]@z=0 – D_z^k[s(x, x^z, n)–1]@z=0) = 0

where x > 1, let slog(x, z, n) = one of:

s(x, x^z, n) – 1 if z <= 0

s(x, z, n) if 0 < z <= 1

s(x, log_x(z), n) + 1 if 1 < z <= x

s(x, log_x(log_x(z)), n) + 2 if x < z <= x^x

...

let tetrate(x, y, n) = z where y = slog(x, z, n).

22

In Maple
Usage:

env := superlog_prepare(n, x):

superlog(env, z); -- gives n-th approx. of slog_x(z)

tetrate(env, y); -- gives n-th approx. of x^^y

Copyright 2005 Andrew Robbins

with(linalg):

superlog_prepare := proc(n::integer, x)

[x, linsolve(matrix([seq([seq(

k^j/k! - `if`(j = k, 1, 0)*log(x)^(-j),

k = 1..n)], j = 0..(n - 1))]),

[seq(`if`(k = 1, 1, 0), k = 1..n)])];

end proc;

superlog := proc(v, z) local slog_crit;

if not (z::numeric) then return 'procname'(args); end if;

slog_crit := proc(zc) -1 + sum(v[2][k]*zc^k/k!,

k = 1..(vectdim(v[2]))); end proc;

piecewise(z = -infinity, -2,

z < 0, slog_crit(v[1]^z) - 1, z = 0, -1,

0 < z and z < 1, slog_crit(z), z = 1, 0,

z > 1, (proc() local a, i; a := z;

for i from 0 while (evalf(a) > 1) do a := log[v[1]](a); end do;

slog_crit(evalf(a)) + i; end proc)());

end proc;

tetrate := proc(v, y) local tet_crit;

if not (y::numeric) then return 'procname'(args); end if;

tet_crit := proc(yc) local slog_crit;

slog_crit := proc(zc) -1 + sum(v[2][k]*zc^k/k!,

k = 1..(vectdim(v[2]))); end proc;

select((proc(a) evalb(Im(a) = 0 and 0 <= Re(a) and Re(a) <= 1)

end proc), [solve(evalf(slog_crit(z)) = yc, z)])[1];

end proc;

piecewise(y = -2, -infinity,

-2 < y and y < -1, log[v[1]](tet_crit(y+1)), y = -1, 0,

-1 < y and y < 0, tet_crit(y), y = 0, 1,

y > 0, (proc () local a, i; a := tet_crit(y - ceil(y));

for i from 1 to ceil(y) do a := v[1]^a; end do;

evalf(a); end proc)());

end proc;

23

Gives the k-th numerical derivative of f(x) at x=c:

ndiff := proc(f, x, c, k, h)

if (k = 0) then subs(x = c, f);

else (ndiff(f, x, c+h, k-1, h) - ndiff(f, x, c, k-1, h))/h;

end if;

end proc;

###

A few commands to try for starters:

###

Prepares the 10th approx. of slog_e(z):

the ':' is used here to suppress display

env := superlog_prepare(10, exp(1)):

Shows e^^0.5, and plots of e^^y:

tetrate(env, 0.5);

plot(tetrate(env, y), y = -2..2, view = -5..15);

plot([tetrate(env, y), ndiff(tetrate(env, t), t, y, 1, 0.0001)],

y = -2..2, view = -5..10);

Shows slog_e(1.5), and plots of slog_e(z):

superlog(env, 1.5);

plot(superlog(env, z), z = -5..15, view = -2..2);

plot([superlog(env, z), ndiff(superlog(env, t), t, z, 1, 0.0001)],

z = -5..10, view = -2..2);

Shows the half-exponential function:

f(x) such that f(f(x)) = exp(x)

half_exp := proc(x) tetrate(env, superlog(env, x) + 1/2); end proc;

plot([x, half_exp(x), half_exp(half_exp(x))],

x = -2..4, view = -1..5);

Plots of slog at different bases:

plot([superlog(superlog_prepare(5, 2), z),

superlog(superlog_prepare(5, 10), z)],

z = -4..8, view = -2..3);

24

In Mathematica
(*

** Usage:

** env = SuperLogPrepare[n, x];

** SuperLog[env, z] -- gives n-th approx. of slog_x(z)

** Tetrate[env, y] -- gives n-th approx. of x^^y

** Copyright 2005 Andrew Robbins

*)

SuperLogPrepare[n_Integer, x_] := {x, LinearSolve[Table[

k^j/k! - If[j == k, Log[x]^-k, 0], {j, 0, n - 1},

{k, 1, n}], Table[If[k == 1, 1, 0], {k, 1, n}]]}

SuperLog[v_, z_?NumericQ] := Block[{(*SlogCrit*)},

SlogCrit[zc_] := -1 + Sum[v[[2, k]]*zc^k/k!, {k, 1, Length[v[[2]]]}];

Which[z ≤ 0, SlogCrit[v[[1]]^z] - 1, 0 < z ≤ 1, SlogCrit[z], z > 1,

Block[{i=-1}, SlogCrit[NestWhile[Log[v[[1]], #]&, z, (i++;#>1)&]]+i]]]

Tetrate[v_, y_?NumericQ] := Block[{(*SlogCrit, TetCrit*)},

SlogCrit[zc_] := -1 + Sum[v[[2, k]]*zc^k/k!, {k, 1, Length[v[[2]]]}];

TetCrit[yc_] := FindRoot[SlogCrit[z] == yc, {z, 1}][[1, 2]]; If[y > -1,

Nest[Power[v[[1]], #]&, TetCrit[y - Ceiling[y]], Ceiling[y]],

Nest[Log[v[[1]], #]&, TetCrit[y - Ceiling[y]], -Ceiling[y]]]]

(* Gives the k-th numerical derivative of f(x) at x=c: *)

ND[f_, x_, c_] := ND[f, x, c, 1]

ND[f_, x_, c_, k_] := ND[f, x, c, k, 0.0001]

ND[f_, x_, c_, 0, h_] := (f /. x -> c)

ND[f_, x_, c_, k_, h_] /; k != 0 := (

ND[f, x, c+h, k-1, h] - ND[f, x, c, k-1, h])/h

25

(***************************************)

(* A few commands to try for starters: *)

(***************************************)

(* Prepares the 10th approx. of slog_e(z): *)

(* the '=' is used here for immediate execution *)

(* the ';' is used here to suppress display *)

env = SuperLogPrepare[10, E];

(* Shows e^^0.5, and plots of e^^y: *)

Tetrate[env, 0.5]

Plot[Tetrate[env, y], {y, -2, 2}, PlotRange -> {-5, 15}]

Plot[{Tetrate[env, y], ND[Tetrate[env, t], t, y]},

{y, -2, 2}, PlotRange -> {-5, 10},

PlotStyle -> {Hue[0], Hue[2/3]}]

(* Shows slog_e(1.5), and plots of slog_e(z): *)

SuperLog[env, 1.5]

Plot[SuperLog[env, z], {z, -5, 15}, PlotRange -> {-2, 2}]

Plot[{SuperLog[env, z], ND[SuperLog[env, t], t, z]},

{z, -5, 10}, PlotRange -> {-2, 2},

PlotStyle -> {Hue[0], Hue[2/3]}]

(* Shows the half-exponential function: *)

(* f(x) such that f(f(x)) = exp(x) *)

HalfExp[x_] := Tetrate[env, SuperLog[env, x] + 1/2]

Plot[{x, HalfExp[x], HalfExp[HalfExp[x]]},

{x, -2, 4}, PlotRange -> {-1, 5}]

(* Plots 5th approx. of slog at different bases: *)

Plot[{SuperLog[SuperLogPrepare[5, 2], z],

SuperLog[SuperLogPrepare[5, 10], z]},

{z, -4, 8}, PlotRange -> {-2, 3},

PlotStyle -> {Hue[0], Hue[2/3]}]

26

Appendix B — Graphs
Here are graphs of tetration and the super-logarithm, to illustrate the difference

between the linear critical extensions, and the new definitions. The red line is the function

itself, the green line is the first derivative, and the blue line is the second derivative:

graph of ey ⋲ sloge
−1 (y)1 graph of ey ⋲ sloge

−1 (y)10

graph of sloge (z)1 graph of sloge (z)10

A graph of exp y (x)⋲ sloge
−1 (sloge (x)10 y)10 , for y = {1, ½, 0, -½, -1}:

27

Appendix C — Numerical Data
D1sloge 040 = 0.915944781172534

D1sloge 050 = 0.915945263266249

D1sloge 060 = 0.915945536274640

D1sloge 070 = 0.915945731075678

D1sloge 080 = 0.915945846988776

D1sloge 090 = 0.915945908914126

D1sloge 0100 = 0.915945951095597

D1sloge 0110 = 0.915945982447644

D1sloge 0120 = 0.915946001992852

D1sloge 0130 = 0.915946014757482

D1sloge 0140 = 0.915946025105883

D1sloge 0150 = 0.915946032676321

D1sloge 0 ⋲ 0.91594603

D2sloge 040 = 0.498696444588079

D2sloge 050 = 0.498704465665853

D2sloge 060 = 0.498707053886320

D2sloge 070 = 0.498708123849263

D2sloge 080 = 0.498708709807559

D2sloge 090 = 0.498708986251720

D2sloge 0100 = 0.498709096804952

D2sloge 0110 = 0.498709165188107

D2sloge 0120 = 0.498709210043943

D2sloge 0130 = 0.498709225011490

D2sloge 0140 = 0.498709229740035

D2sloge 0150 = 0.498709235488693

D2sloge 0 ⋲ 0.49870923

D3sloge 040 =−0.66276507305193

D3sloge 050 =−0.66276873212276

D3sloge 060 =−0.66277398975381

D3sloge 070 =−0.66277900884800

D3sloge 080 =−0.66278207800690

D3sloge 090 =−0.66278377739784

D3sloge 0100 =−0.66278506194145

D3sloge 0110 =−0.66278603921500

D3sloge 0120 =−0.66278664482280

D3sloge 0130 =−0.66278706373557

D3sloge 0140 =−0.66278741544855

D3sloge 0150 =−0.66278766900692

D3sloge 0 ⋲−0.662787

D4sloge 040 =−2.25390534517765

D4sloge 050 =−2.25423131435349

D4sloge 060 =−2.25434721926022

D4sloge 070 =−2.25440263020639

D4sloge 080 =−2.25443382098240

D4sloge 090 =−2.25444919899063

D4sloge 0100 =−2.25445694299939

D4sloge 0110 =−2.25446221464863

D4sloge 0120 =−2.25446557924414

D4sloge 0130 =−2.25446727337134

D4sloge 0140 =−2.25446838669198

D4sloge 0150 =−2.25446928157285

D4sloge 0 ⋲−2.25446

28

D5sloge 040 = 1.20123676054844

D5sloge 050 = 1.20028806575165

D5sloge 060 = 1.20013405434286

D5sloge 070 = 1.20017665549235

D5sloge 080 = 1.20021193383909

D5sloge 090 = 1.20023796411121

D5sloge 0100 = 1.20027097420290

D5sloge 0110 = 1.20029821853748

D5sloge 0120 = 1.20031476521818

D5sloge 0130 = 1.20032838768356

D5sloge 0140 = 1.20034088728237

D5sloge 0150 = 1.20034958138708

D5sloge 0 ⋲ 1.20034

D6sloge 040 = 25.8189589561658

D6sloge 050 = 25.8329970026009

D6sloge 060 = 25.8387294460917

D6sloge 070 = 25.8419419969967

D6sloge 080 = 25.8437963173890

D6sloge 090 = 25.8447456907652

D6sloge 0100 = 25.8453047049794

D6sloge 0110 = 25.8457046662579

D6sloge 0120 = 25.8459565204653

D6sloge 0130 = 25.8461048506513

D6sloge 0140 = 25.8462167550629

D6sloge 0150 = 25.8463012017336

D6sloge 0 ⋲ 25.846

D7sloge 040 = 32.9490742321220

D7sloge 050 = 33.0744463270470

D7sloge 060 = 33.1106415509182

D7sloge 070 = 33.1226292184246

D7sloge 080 = 33.1288636927751

D7sloge 090 = 33.1315430903712

D7sloge 0100 = 33.1319812761822

D7sloge 0110 = 33.1320611530065

D7sloge 0120 = 33.1321507609728

D7sloge 0130 = 33.1319536106881

D7sloge 0140 = 33.1316616124526

D7sloge 0150 = 33.1314888709522

D7sloge 0 ⋲ 33.131

D8sloge 040 =−495.05095328987

D8sloge 050 =−495.47688098167

D8sloge 060 =−495.72547010186

D8sloge 070 =−495.90651130833

D8sloge 080 =−496.01445390533

D8sloge 090 =−496.07230375701

D8sloge 0100 =−496.11212255466

D8sloge 0110 =−496.14179306528

D8sloge 0120 =−496.16027838058

D8sloge 0130 =−496.17242819312

D8sloge 0140 =−496.18231831220

D8sloge 0150 =−496.18954127850

D8sloge 0 ⋲−496.18

29

slog2
−10.52 = 1.458961693832438

slog2
−10.54 = 1.458655904880133

slog2
−10.56 = 1.458692450371729

slog2
−10.58 = 1.458741984415978

slog2
−10.510 = 1.458768532260076

20.5 ⋲ 1.4587

sloge
−10.510 = 1.6464556716360208

sloge
−10.520 = 1.6463676325953218

sloge
−10.530 = 1.6463577769479243

sloge
−10.540 = 1.6463553806741427

sloge
−10.550 = 1.6463546427466649

e0.5 ⋲ 1.64635

sloge
−1e 10 = 2078.198719173609

sloge
−1e 20 = 2076.129166296636

sloge
−1e 30 = 2075.998583292668

sloge
−1e 40 = 2075.975284589419

sloge
−1e 50 = 2075.968983446195

sloge
−1e 60 = 2075.967658498696

sloge
−1e 70 = 2075.967604923759

sloge
−1e 80 = 2075.967631271361

sloge
−1e 90 = 2075.967687365403

sloge
−1e 100 = 2075.967814831020

sloge
−1e 110 = 2075.967925399709

sloge
−1e 120 = 2075.967991775568

sloge
−1e 130 = 2075.968051571147

sloge
−1e 140 = 2075.968108549399

sloge
−1e 150 = 2075.968147604069

ee ⋲ 2075.9681

sloge
−110 = 37105406757.56952

sloge
−120 = 37155268624.63599

sloge
−130 = 37152290690.85273

sloge
−140 = 37150849430.35024

sloge
−150 = 37150331380.03964

sloge
−160 = 37150112554.57623

sloge
−170 = 37149986051.50005

sloge
−180 = 37149912712.49439

sloge
−190 = 37149874928.20818

sloge
−1100 = 37149852157.21806

sloge
−1110 = 37149835758.34629

sloge
−1120 = 37149825450.22689

sloge
−1130 = 37149819264.78736

sloge
−1140 = 37149814532.74459

sloge
−1150 = 37149810983.64210

e ⋲ 3.714981×1010

30

Appendix D — Identities

x−1 = 0 x0 = 1 x1 = x x2 = x x

xy = expx
y (1)

expx
y (a)= x

yslogx (a)

srt2 (x)= 1 / (x
−1)∞ = log (x)

W (log (x))

srt∞ (x)= 1 / (x
−1)2 = x x

References

[1] J. Bowers, Array Notation,

Nov. 2005 <http://hometown.aol.com/hedrondude/array.html>.

[2] J.H. Conway and R.K. Guy, The Book of Numbers, Springer-Verlag, (1996).

[3] L. Euler, De formulis exponentialibus replicatis, Acta Academiae Scientiarum

Petropolitanae, 1 (1778).

[4] I.N. Galidakis, On Extending hyper4 and Knuth's Up-arrow Notation to the Reals,

(2000), Nov. 2005 <http://www.virtualcomposer2000.com/math/Extensions.pdf>.

[5] D. Geisler, What Lies Beyond Exponentiation?,

Nov. 2005 <http://www.tetration.org>.

[6] L. Kindermann, Iterative Roots and Fractional Iteration, (2004)

Nov. 2005 <http://reglos.de/lars/ffx.html>.

31

[7] A. Knoebel, Exponentials reiterated, American Mathematical Monthly, 88 (1981).

[8] D.E. Knuth, Mathematics and Computer Science: Coping with Finiteness,

Science 194, 1235-1242, (1976).

[9] Z. Lesniak, On Continuous Iteration Groups of Some Homeomorphisms of the

Plane, (1991).

[10] J. Miller, Earliest Known Uses of Some of the Words of Mathematics,

Nov. 2005, <http://members.aol.com/jeff570/t.html>.

[11] R.P. Munafo, Large Numbers,

Nov. 2005 <http://home.earthlink.net/~mrob/pub/math/largenum.html>.

[12] C. A. Rubtsov and G. F. Romerio, Ackermann's Function and New Arithmetical

Operations, (1989),

Nov. 2005 <http://www.rotarysaluzzo.it/filePDF/Iperoperazioni%20(1).pdf>.

[13] R. Rucker, Infinity and the Mind, Princeton University Press (1995).

[14] E.W. Weisstein et al., Power Tower, MathWorld —AWolframWeb Resource,

Nov. 2005 <http://mathworld.wolfram.com/PowerTower.html>.

[15] Author unknown, Tetration, Wikipedia,

Nov. 2005 <http://en.wikipedia.org/wiki/Tetration>.

32

