
Definition 7. The analytic piecewise extension of the super-logarithm

s ( x , z )n =−1∑
k=1

n
zk

k !
vk ( x ) if x  1 , 0 z ≤ 1

where vk ( x )= D z
k [ s ( x , x z )n− 1]z=0

or vk ( x )= [〈〈mkm ! − mk log ( x )
−k 〉

m=1

n 〉
k=0

n−1 ]
−1

〈m1 〉m=1
n

slogx ( z )n= s ( x , x
z )n− 1 if x  1 , z ≤ 0

slogx ( z )n= s ( x , z )n if x  1 , 0 z ≤ 1

slogx ( z )n= s ( x , logx
m ( z ))n m if x  1 , ( xm−1 ) z ≤ ( xm ) , m 0

slogx ( z ) = lim
n∞

slogx ( z )n if x  1

where the superscript (–1) indicates the inverse matrix.

We already know that the super-logarithm defined in this manner will satisfy

property (2), because it is a piecewise extension. Although we can soon find if the super-

logarithm satisfies property (3), it still is not obvious that the series converges, or that the

final limit exists. To show this, we need to take a closer look at vk ( x ) . Applying the

ratio test for when x = e, we get a rather chaotic graph. Looking closely at this graph,

there is a pattern that repeats every seven terms, so we find that the graph of the ratios of

the terms is much smoother when the ratio is for those terms that are seven terms apart:

graph of
vk1 ( e )n

vk ( e )nk1
in k from 1 to n graph of

vk7 ( e )n k !

vk ( e )n ( k7)!
in k from 1 to n

17



where the second graph seems to fall on a curve for low k. This curve can be expressed

algebraically by the approximate recurrence relations:

vk7 ( e )⋲−vk ( e ) e
2 k 2.95 k logk

or: vk7 ( e )⋲−vk ( e ) k
7(7 /k )1/k

where the magnitudes are roughly:

∣vk ( e )∣⋲ k ( k
2/2950 k /2− 3)

which helps explain the signs of the terms. These do not help us determine the

convergence of the series, because in the limit as k∞ they become infinite. For now,

we can only see whether the approximations of the super-logarithm constructed as in

definition (7), converge to each other. In order to do this we will look only at the critical

function s ( e , z )150 . The definition of this function is not limited to real numbers, it is

only the piecewise-defined slog x ( z )n that is limited to real numbers. Outside a certain

region in the complex plane, complex z will give extreme values that do not correspond

to previous approximations, so we can identify an approximate radius of convergence by

looking at some 3D plots of the real part of the critical function s ( e , z )150 :

graph of ℜ[s ( e , z )150] graph of ℜ[ s ( e , z )150] = y if y < 2
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as you can see, although we haven't found the radius of convergence algebraically, there

does seem to be a radius of convergence, and it covers the required domain of the critical

function: 0≤ z ≤1. These graphs and the tables of numerical data in appendix C are

the best proof of convergence that the author has found. Hopefully a more exact method

will be found, but until then we will assume it converges. There is no indication that it

would not converge, but that is not enough to prove it does.

Assuming lim
n∞

s ( x , z )n converges for all 0≤ z ≤1 , the following shows the

uniqueness and properties of the super-logarithm in definition (7):

Rough Proof

The critical functions s ( x , z )n converge for finite n, and lim
n∞

s ( x , z )n seems

to converge within the approximate radius of convergence shown above. There is no

question if the critical functions are C∞ . The piecewise-defined functions

slogx ( z )n are C n−1 , by lemma (1), so in the limit slogx ( z )∞ is C∞ . This

proves that slogx ( z )∞ satisfies property (3), and since the piecewise-defined functions

slog x ( z )n are defined using property (2), they must satisfy it. Since the determinant

being zero implies 0 < x < 1, by lemma (2), the logical complement would be that the

determinant is nonzero if x > 1. The determinant being nonzero then implies there is one

and only one solution to the system of equations the matrix represents. So if x > 1,

slogx ( z )∞ exists and is unique. Therefore, given an x > 1, slogx ( z )= slogx ( z )∞

exists, is unique, and satisfies properties (2) and (3). This proves that definition (7) is the

analytic piecewise extension of the super-logarithm to all real number z. ∎
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Generalization

Solving for the super-logarithm has produced “nice” C n approximations. We

can generalize this by going back to Abel's equation for linearizing a function:

 ( f ( z ))= ( z ) 1
 ( z )= ( f ( z ))− 1
Dk [ ( z )] = Dk [ ( f ( z ))− 1]
Dk [ ( z )]z=0= Dk [ ( f ( z ))− 1]z=0

 ( z )n= ∑
k=0

n
zk

k !
Dk [ ( f ( z ))− 1]z=0

 ( z )= lim
n∞

 ( z )n

defining the linearizing function by the property we desire of it, and solving for

approximations of it for some 0≤ k  n . It is possible this could work for any analytic

f ( z ) , but it is likely that additional conditions apply. If the equations have a solution,

and the solutions converge, then any iterate of the function can be expressed as:

 ( f ( z ))= ( z ) 1
 ( f n ( z )) = ( z ) n
f n ( z )=−1 ( ( z )n )

This method is not restricted to continuously iterating a function over the real

numbers, the series expansion should work within some complex radius of convergence.

20



Conclusion

We now have a unique analytic piecewise extension of the super-logarithm. Using

the super-logarithm, we can define tetration as its inverse. Also, because the super-

logarithm is the linearizing function of exponentials, we can use it to define continuously

iterated exponentiation as well. Remember that the first definition of the super-logarithm

requires that x
slog x (a ) = a = expx

slogx ( a ) ( 1 ) hold in general. This allows the definition

of continuously iterated exponentiation as follows:

Definition 8. Tetration

xy = slogx
−1 ( y ) if x  1, y −2

xy = logx ( xy1 ) if x  1, y ≤−2

Definition 9. Continuously iterated exponentiation

expx
y ( a )= x

yslog x (a ) if x  1

In this paper, a unique analytic piecewise extension has been presented for the

super-logarithm, tetration, and continuously iterated exponentiation. In appendix A, the

method used for solving the systems of equations to produce the approximations of these

extensions is given. Now that the numerical values of the super-logarithm and tetration

can be found to any precision, it is only a matter of time before a closed-form definition

of tetration and related functions is found.
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